Deviating the Wellbore by Jetting and Whipstock (Directional Drilling)

To deviate a well from a vertical path, and get it to follow an intended well trajectory , it is necessary to put some side force onto the bit. The amount of this, as well as its direction, are vital in order to keep the bit to its intended path. Other factors will also have an influence, including the hardness of the rock which is being drilled, as well as bedding plane angles. There are numerous different ways of developing a controlled side force on the bit. Two of the earliest developed methods are whipstock and jetting which will be discussed in this article.

Jetting as the Directional Drilling Tool

A tricone drill bit possesses three drilling cones, with a nozzle in between each one. Should a large nozzle be set into a single nozzle pocket, and two smaller nozzles used alongside it, then the majority of the mud flow would pass through the larger nozzle. Drilling fluid will be ejected from the drill bit with a significant amount of force, and so long as the formation is not overly hard, will erode the rock in its path. As the large nozzle directs the majority of the flow to a single point, a pocket will be carved into the rock in this direction. The well may be deviated simply by aligning the bit in the necessary direction, and then circulating without rotation.

Once between 5-6 feet have been washed away, the bit is then rotated, and drilling continues as normal. This process can be repeated continuously until an angle of around 12° is produced, or until rock is reached which is too solid to jet through. Figure 1 to 3 illustrate a jetting operation by a rotary drilling assembly, which is used to allow the well to keep building an angle while drilling and rotating take place.

Figure 1 – Jet a well to desired direction

Continue reading

Directional Well Planning and Well Profile

The well planning process starts from geologists and reservoir engineers who decide the best place for the wellbore. They may only need to determine a single target, which will often be a tolerance of about 330 ft (100 m) around a certain target point. In this case, the angle at which the well enters the target can have various degree of deviation from the plan since a plan requires to hit only one target. On the other hand, it might be necessary for the well to penetrate multiple targets, with the final target being increasingly complex. This requires what is known as “geosteering”, a process which will be discussed later in the directional drilling series. The drilling engineer therefore needs to examine potential surface locations (if more than one is available) and design a well path which meets all necessary target requirements at the lowest possible cost. Cost can be minimized most effectively when there is a certain degree of flexibility when it comes to the surface location.

Continue reading

Why Directional Wells Are Drilled?

Even outside the drilling industry, the concept of directional drilling, whereby a drill is precisely guided through a particular target, is a fascinating one. This article will describe about applications of directional drilling in oil and gas industry. Later on, we will discuss in several aspects of directional drilling such as directional drilling tools, well path design, wellbore navigation tools, etc. Let’s get started.

Why Drill Directional Wells?

It is a fact that it is always more expensive to drill a deviated well to a target not directly below the rig location, as opposed to simply drilling down vertically to the target.

However, there is good reason why a directional well might be used: in some circumstances, it can actually lower the total cost of the project. Some potential reasons for this include:

Multiple exploration wells from a single wellbore

It is possible to drill a well to evaluate it, and then cement it back up. This well may then be deviated from its original path to an additional target. This may be done in order to evaluate multiple compartments in a single reservoir, if it is naturally split into several sections, or to extend the knowledge of the structure using a single well.

Figure 1 – Example of Multiple Exploration Wells from a Single Wellbore

Continue reading

Floating Offshore Structures – Offshore Structure Series

There are many oil and gas discoveries which are out of reach of fixed structures for one reason or another. They may be in extremely deep water, or the oil or gas deposit might be too small or too widely spread to warrant the high cost of building a fixed structure. In these cases, seabed-completed wells may be connected to a floating platform moored above the field, using a production marine riser. The limiting conditions for fixed installations are not clearly defined, and they have been used in some cases for depths of over 250 meters, although this is in a benign environment. Floating platforms can also be used as the basis for an Early Production System (EPS), in which the appraisal wells drilled from a floating drilling vessel are completed at the seabed and produced to a floating platform carrying the required process plant and other facilities. This allows production to begin and create income whilst a fixed platform is being designed and installed for full field development. In this article, there are some discussions about three main types of floating offshore structures which are Tension Leg Platforms, SPAR and FPSO.

Tension Leg Platforms (Tethered Buoyant Structures)

One more form of offshore platform is what is known as the Tension Leg Platform, or Tethered Buoyant Structure. This method is intended for oil and gas production from water depths of over 500 meters. The platform works in much the same way as a taut moored buoy, which is anchored to the seabed using a vertical wire. The Tethered Buoyant Structure is basically a large, semi-submersible floating vessel, which uses a heavy gravity anchor to moor it to the seabed. Tension force is maintained in these vertical cables by adjusting the buoyancy of the floating platform, to ensure positive tension at all times. This method reduced marine response in the platform to effectively zero in vertical terms, and very little in horizontal terms. Horizontal drift can be further reduced as necessary. By using buoyance against a tension mooring system, this allows the use of a semi-submersible floating platform which can carry an additional load, balancing this out by increasing the buoyancy.

This type of structure is still under development, and there are still many problem points to iron out. How widespread it will become in the future is largely dependent on solving these issues, along with a thorough economic assessment comparing the system to other available ones.

Figure 1 – Tension Leg Platform

Continue reading

Summary of Comparison between Piled Offshore Platform Structures VS Concrete Gravity Structures

We’ve discussed about two type of fixed platform structures which are piled offshore platforms and concrete gravity structures. In this article, it summarize the comparison between these two fixed offshore structures.

Figure 1 – Piled Structure and Gravity Structure of Brent (Courtesy of Shell UK)

Continue reading