Annular Velocity (AV) Calculation

Annular Velocity (AV) is how fast of fluid in annulus while pumping.

Three main factors affecting annular velocity are size of hole (bigger ID), size of drill pipe (smaller OD) and pump rate. This post will show you how to calculate annular velocity in feet per minute with different formulas.

Formula#1: Annular velocity (AV) in ft/min



Annular velocity in ft/min = Flow rate in bbl/min ÷ annular capacity in bbl/ft

Example:
Flow rate = 10 bbl/min
Annular capacity = 0.13 bbl/ft
AV = 10 bbl/min ÷ 0.13 bbl/ft
AV = 76.92 ft/mim

Formula#2: Annular velocity (AV) in ft/min



Annular velocity in ft/min = (24.5 x Q) ÷ (Dh2 – Dp2)

where
Q = flow rate in gpm
Dh = inside diameter of casing or hole size in inch
Dp = outside diameter of pipe, tubing or collars in inch

Example:
Flow rate (Q) = 800 gpm
Hole size = 10 in.
Drill pipe OD = 5 in.
AV = (24.5 x 800) ÷ (102 – 52)
AV = 261 ft/mim

Formula#3: Annular velocity (AV) in ft/min



Annular Velocity in ft/min = Flow rate (Q) in bbl/min x 1029.4÷ (Dh2 – Dp2)

Example:
Flow rate (Q) = 13 bbl/min
Hole size = 10 in.
Drill pipe OD = 5 in.
AV = 13 bbl/min x 1029.4 ÷ (102 – 52)
AV = 178.43 ft/min

You also can back calculate how much flow rate you want for desired annular velocity in feet per minute as per following formulas.

Flow rate required in gpm = (AV in ft/min) x (Dh2 – DP2) ÷ 24.5

AV = desired annular velocity in ft/min
Dh = inside diameter of casing or hole size in inch
Dp = outside diameter of pipe, tubing or collars in inch

Example:
Desired annular velocity = 120 ft/mm
Hole size = 10 in
Drill pipe OD = 5 in.
Flow rate required in gpm = 120 x (102– 52) ÷ 24.5
Flow rate required in gpm = 367.4 gpm

Moreover, you can calculate strokes per minute (SPM) required for a given annular velocity in feet per minute as well. The idea is to use the formula above and devided by pump output in bbl/stk. Let’s review the fomula.

SPM = (AV in ft/min x annular capacity in bbl/ft) ÷ pump output in bbl/stk

AV = desired annular velocity in ft/min

Example
Desired annular velocity in ft/min = 120 ft/min
Dh = 12-1/4 in.
Dp = 4-1/2 in.
Annular capacity = 0.1261 bbl/ft
Pump output = 0.136 bbl/stk
SPM = (120 ft/mm x 0.1261 bbl/ft) ÷ 0.136 bbl/stk
SPM = 111.3 spm

Please find the Excel sheet  for calculating annular velocity

Ref books: Lapeyrouse, N.J., 2002. Formulas and calculations for drilling, production and workover, Boston: Gulf Professional publishing.

Bourgoyne, A.J.T., Chenevert , M.E. & Millheim, K.K., 1986. SPE Textbook Series, Volume 2: Applied Drilling Engineering, Society of Petroleum Engineers.

Mitchell, R.F., Miska, S. & Aadny, B.S., 2011. Fundamentals of drilling engineering, Richardson, TX: Society of Petroleum Engineers.

Related Post

Effect of Frictional Pressure on ECD while reverse... A reverse circulation is another way to circulate by circulating into annulus up to a bit and drill string. The fluid outlet is at stand pipe side. Fo...
What are the differences between Formation Integri... You may confuse between Formation Integrity Test (FIT) and Leak Off Test (LOT). They are different in this following aspect. Leak Off Test – you...
Volume of mud in bbl increase due to adding barite After adding barite to increase mud weight in the system, total mud volume will increase due to volume of dry barite. This formula below shows you how...
Hydrostatic Pressure Loss Due to Gas Cut Mud When you get gas-cut into your drilling mud, it will reduce mud weight causing hydrostatic pressure decrease. The concept of this calculation is to ca...
Share the joy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

About DrillingFormulas.Com

Working in the oil field and loving to share knowledge.
Tagged , , . Bookmark the permalink.

5 Responses to Annular Velocity (AV) Calculation

  1. Pingback: Calcuate Annular Pressure Loss | Drilling Formulas and Drilling Calculations

  2. Pingback: Cutting Slip Velocity Calculation Method 2‎

  3. Pingback: Equivalent Circulating Density, Standpipe Pressure Management and Hole Cleaning

  4. Pingback: Annular Velocity and Its Importance to Drilling Hydraulics

  5. Nawaz says:

    very good

Leave a Reply

Your email address will not be published. Required fields are marked *