Basic Knowledge about Multilateral Well and Completion

A multilateral well is a well with two or more laterals (horizontal, vertical, or deviated) drilled from a main mother well. This allows one well to produce from several reservoirs. Multilateral wells are suitable for complex geology where drilling more new wells to penetrate to those reservoirs is not economical. Lateral sections may be used to produce from a separated section in depleted, faulted, layered and heavy oil reservoirs.

Figure 1 – Multilateral Well Bashkiria drilled in 1953 (Credit – http://www.drillingcontractor.org)

Figure 2 shows how multilateral wells fit with several geological structures.

Figure 2 – Multilateral well with different geological structure

Continue reading

Directional Drilling Calculation Example for J-Profile Well

This article demonstrates how to design the well trajectory in J-shape from the surface location to the required target depth (TD).

Information Given

  • The surface location coordinate of Well-A is 6,543,065.00N 416,695.00E and the target is located at 6,542,213.00N 415,456.00E and the UTM zone is 31N.

  • Kick off depth = 4,200’MD/4,200’TVD
  • Planned build up rate = 2 degree/100 ft
  • Well profile = J-profile (build and hold)

The surface location coordinate of Well-A is 6,543,065.00N 416,695.00E and the target is located at 6,542,213.00N 415,456.00E and the UTM zone is 31N. Therefore, the surface and the target for Well-A can be illustrated is Figure 1. Continue reading

Directional Control by Rotary Steerable

Nowadays, many wells required complex well trajectory plans in order to reach reservoir sections and some of complicated well paths (Figure 1) cannot be drilled with either rotary drilling assemblies or mud motors. In order to achieve the drilling goal, rotary steerable tools are usually selected.

Figure 1 – Complex Well Paths

While the precise mechanics might vary, each rotary steerable tool uses much the same approach. Running the rotary steerable immediately above the bit serves as a sort of replacement for a near bit stab (NB stab). Most tools use three blades close to the drill bit, which act as stablizers and move in and out. While the tool turns, the blade which is turning in the opposite direction pushes against the side of the hole, giving the necessary side force to create a curved hole while drilling.

When using a steerable motor, the adjustment of the well path a series of slide drilling and rotary drilling doesn’t give a clean smooth edge, but rather creates a hole with multiple sharp edges, and straight sections between them. A rotary steerable tool, on the other hand, does give a smooth curved hole. This makes the wellbore more stable, and less resistant when tripping in and out of the hole. With higher inclinations, a smooth curve makes for an easier job of running casing or logging tools. Continue reading

Directional Drilling by Rotary Drilling Assembly

Rotary drilling assemblies can typically control a directional of a well by having proper stabilizer placement. With this kind of drilling assembly, only inclination can be controlled and a well cannot be directionally oriented to required direction. In this article, it briefly describe how stabilizer placement can affect the well direction.

Rotary Build Assembly (Fulcrum Assembly)

When a drill collar is supported at both ends but not held vertically, its own weight causes it to sag in the middle. This phenomenon is used in rotary drilling assemblies to create the necessary side force at the bit to alter the angle (Figure 1).

Figure 1 – A build rotary assembly

Continue reading

Deviating the Wellbore by Positive Displacement Motor (Directional Drilling)

A positive displacement motor (PDM) is one of the most popular tool for drilling a directional well. It works by boring downwards and pumping mud through the motor itself. As shown in figure 1, the bottom section of the motor has an adjustable bend housing.

Figure 1 – Positive Displacement Motor (Courtesy of Schlumberger)

Before the motor is run into the hole, a set-up process needs to be carried out

  1. The bend will be adjusted according to the directional performance that the motor needs to achieve. This bend is only very slight, usually being under 2°.
  1. The motor is hooked up to navigational tools, which are then calibrated, in order for the driller to see where the bend is pointing when drilling. These tools are known as measurement while drilling, or MWD, and are described in detail later in this document.
  1. The other parts of the system will be adjusted to account for the required directional performance- the severity of this will depend on the drill design.

Continue reading