Hydrostatic Pressure (HP) Decreases When POOH

When pulling out of hole, volume of steel will be out of hole and mud volume will replace the steel volume.  If we don’t fill hole, hydrostatic pressure will decrease. There are 2 cases of pulling pipe which are pull dry and pull wet. Each condition is different in calculation concept because mud volume to displace pipe volume is different.

This topic shows you how to calculate hydrostatic pressure loss for both cases of pulling pipe, pull dry and pull wet. Moreover, there is the Excel sheet for calculating pressure decrease due to pulling out of hole.

Case#1: When pulling DRY pipe

When pulling dry, we will consider volume of steel out of hole only.

Step 1: Determine Total Pipe Volume

Step 2: Determine Hydrostatic Pressure Decrease

Example: Determine the hydrostatic pressure decrease when pulling DRY pipe out of the hole:

Number of stands pulled = 10
Pipe displacement = 0.0055 bbl/ft
Average length per stand = 91 ft
Casing capacity = 0.0873 bbl/ft
Mud weight = 12.0 ppg

Step 1: Determine of pipe displacement in Barrels = 10 stands x 91 ft/std x 0.0055 bbl/ft displaced
Barrels displaced = 5.01 bbl
Step 2: Determine HP, psi decrease = 5.01 barrels x 0.052 x 12.0 ppg ÷ (0.0873 bbl/ft – 0.0055 bbl/ft)
Hydrostatic pressure decrease = 38.2 psi

Case#2: When pulling WET pipe

When pulling wet, we will consider volume of steel out of hole and volume of mud in drillpipe as well. Therefore, pulling wet will decrease hydrostatic more than pulling dry pipe.

Step 1: Barrels displaced = number of stands pulled per stand in ft
x average length x {pipe disp inbbl/ft + {(% volume in drill pipe out of hole ÷ 100) x pipe cap in bbl/ft)}

Step 2: Determine hydrostatic pressure in psi decrease = barrels displaced x 0.052 x mud weight, ppg ÷ ((casing capacity in bbl/ft) – (Pipe disp in bbl/ft + pipe cap in bbl/ft))

Example: Determine the hydrostatic pressure decrease when pulling WET pipe out of the
hole:

% of volume in drill pipe out of hole = 100
Number of stands pulled = 10
Pipe displacement = 0.0055 bbl/ft
Average length per stand = 91 ft
Pipe capacity = 0.01876 bbl/ft
Mud weight = 12.0 ppg
Casing capacity = 0.0873 bbl/ft

Step 1: Barrels displaced = 10 stands x 91 ft/std x {(.0055 bbl/ft + (100 ÷ 100) x 0.01876 bbl/ft)}
Barrels displaced = 22.08 bbl

Step 2: hydrostatic pressure in psi decrease = 22.0766 barrels x 0.052 x 12.0 ppg ÷ ((0.0873 bbl/ft) – (0.0055 bbl/ft + 0.01876 bbl/ft))
HP decrease, psi = 218.52 psi

Please find the Excel sheet for calculating pressure decrease due to pulling out of hole.

Ref books: Lapeyrouse, N.J., 2002. Formulas and calculations for drilling, production and workover, Boston: Gulf Professional publishing.

Bourgoyne, A.J.T., Chenevert , M.E. & Millheim, K.K., 1986. SPE Textbook Series, Volume 2: Applied Drilling Engineering, Society of Petroleum Engineers.

Mitchell, R.F., Miska, S. & Aadny, B.S., 2011. Fundamentals of drilling engineering, Richardson, TX: Society of Petroleum Engineers.

Related Post

Ton-miles for coring operation For coring operation, the ton-miles calculation is also expressed in terms of work in round trip ton-miles. In order to determine the coring ton-miles...
How to Select a Scientific Calculator for Oilfield... Working in the oilfield, you need a scientific calculator to help you solve problems with complex formulas. As you learn from this website, drillingfo...
Determine Bottom Hole Pressure from Wellhead Press... Gas behaves differently from fluid therefore you cannot use a simple hydrostatic formula to determine reservoir pressure. Gas is compressible but flui...
Equivalent Circulating Density (ECD) in ppg Equivalent Circulating Density (ECD) is the effective density that combines current mud density and annular pressure drop. ECD is vital for drilling e...
Share the joy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

About DrillingFormulas.Com

Working in the oil field and loving to share knowledge.
Tagged , , , . Bookmark the permalink.

4 Responses to Hydrostatic Pressure (HP) Decreases When POOH

  1. Pingback: Drill pipe pulled to lose hydrostatic pressure | Drilling Formulas and Drilling Calculations

  2. Kelly Brown says:

    The article is usefull for me. I’ll be coming back to your blog.

  3. vignesh says:

    Hello,
    For a 2 3/8″ N80 tubing string what would be the casing size be. I am asking this as I am solving a problem on the hydrostatic pressure loss of pulling 20, 90′ 2 3/8″ N80 tubings from a depth of 10000′ @ fluid density of 10ppg & formation pressure of 5000psi. The casing size is not provided in this case. I tried finding out the suitable casing size for this tubing but was not successful. If possible please provide some inputs/guidance. thanks for your time.
    regards
    Vignesh

  4. Muhammad Usman says:

    This article is very helpful for me thank you very much

Leave a Reply

Your email address will not be published. Required fields are marked *