Concrete Gravity Structures – Offshore Structure Series

As the name suggests, the concrete gravity structure is reliant on its own weight, and the capability of the seabed to maintain that weight, in order to remain stable. They are designed particularly with storm conditions in mind. Like other types of structure, they come in multiple design variations, and may be made out of concrete, steel, or a combination of the two. Concrete gravity structures were first used in the Ekofisk Field off Norway, although the design principle had previously been used in lighthouse construction. The Ekofisk structure, which had originally only been intended for oil storage but was then modified for use as a large gas handling and compression plant, was soon followed up with the construction of multiple additional drilling and production concrete gravity structures made from reinforced concrete. Given the huge demand placed on onshore prefabrication sites, and the significance of the water depths available to constructors for fabricating and towing these structures near to the shore, there has been a wide variety of different gravity designs, despite being constrained by the conditions of the construction site. It has been impossible to create an optimized design which is suitable to be built at all available sites.

The concrete gravity structure is built in a tapered shape, with as much of the mass and bulk concentrated as close as possible to the seabed. Ideally, the platform is constructed close to the shore, and the topside facilities are placed in a sheltered site before the offshore tow begins. Then, the whole thing is moved to its final location through the use of ocean-going tugs. This is done as much as possible using a multi-celled caisson raft, which can measure up to 100 meters high and 60 meters wide. From this raft base, a number of columns will be carried up to the full height of the structure. When the raft reaches the offshore location, the caisson is water ballasted and landed on the sea bed, Offshore installation can therefore take as little as a few days, which is certainly an advantage in harsh areas which have short fair weather periods. Concrete gravity structures can be used in water depths up to 160 meters and with weights of over 300,000 tonnes.

Examples of concrete gravity structures – Ninian Central Platform

Figure 1 demonstrates Ninian Central platform, a large concrete tower with a series of tanks around the base. These concrete fixed platforms are able to store fluids, and can also be attached to export lines, which gives them a significant advantage over steel jacket platforms. Jacket platforms generally lack tanks, although they can be built on deck, which means that their export can be entirely lost if a tanker does not stick to its strict schedule. Concrete platforms also do not need to be secured to the seabed. Thanks to skirts around the concrete, erosion is prevented. Concrete platforms perform exactly the same function as steel jacket platforms, with only the support structure being different.

Figure 1 – Ninian Central platform

Continue reading

Please follow and like us:

Determine Thickness of Concrete for Concrete Coated Pipeline

Coating the subsea pipeline with concrete is a technique to add downward force for stability of pipelines situated on the seabed. Figure 1 shows that the concrete coated subsea pipe line is being welded. This article will demonstrate how to calculate the thickness of concrete required in order to achieve the required net down force.

Figure 1 - The Concrete Coated Subsea Pipe Line is being Welded

Figure 1 – The Concrete Coated Subsea Pipe Line is being Welded

Determine thickness of coated cement based on the given information below. Continue reading

Please follow and like us: