About DrillingFormulas.Com

Working in the oil field and loving to share knowledge.

Water Phase Salinity of Oil Based Mud

Water phase salinity is a factor showing the activity level of salt in oil based mud. In order to control the water phase salinity, salt is added into the drilling fluid. The salt added into the system will be dissolved by water in the mud; therefore, the chloride content will increase.

By increasing the chloride concentration (adding salt), the activity level in the mud will decrease. Salt is added in order to create an activity level which is equal to or less than formation water. Therefore, the water phase in the mud will not move into formation and cause a clay swelling issue. Practically, calcium chloride (CaCl2) or sodium chloride (NaCl) is the chemical to be used.

Continue reading

Please follow and like us:
0

5 Largest Offshore Structures (Rig and Production Platform) in The World

Offshore structures (rig and production platform) are complex facilities to drill wells (options) and produce gas from wells from offshore locations. This is one of the most fascinating structures in the world and this article will show 5 largest offshore structures on the planet.

1. Berkut Platform

Berkut Platform

Berkut Platform (Courtesy of Rosneft)

Berkut is the world’s biggest oil platform which has begun commercial production at the Sakhalin-1 offshore project in Russia’s Far East. The Berkut oil rig is expected to extract 4.5 million tons of oil annually. The Sakhalin-1 Consortium was formed in 1996 is the first major shelf project in Russia created under terms of a Product Sharing Agreement (PSA). The international consortium is made up of the US major ExxonMobil (30 percent), Japan’s Sodeco (30 percent), Russia’s Rosneft (20 percent) and India’s ONGC Videsh (20 percent). The Berkut platform is expected to produce 12,000 tons of oil daily or about 4.5 million tons annually, raising the total output of the Sakhalin-1 Consortium to 27,000 tons a day. Continue reading

Please follow and like us:
0

Benefits of Casing while Drilling

Casing while drilling provides immediate benefits, saving both time and money by altering the steps needed for the drilling process. On top of this, the CwD system also provides a whole host of additional benefits. The benefits of casing while drilling can be summarized below;

benefits-of-casing-while-drilling-cover

Save Time and Cost

As mentioned in the introduction part, Basic Knowledge of Casing while Drilling (CwD), CwD is able to save operation time by cutting down flat time and reducing operational risk. When compared to conventional drilling, CwD can provide a time saving of between up to 37.5% of time spent on a well based on historical data from a field in Oman (136107-PA SPE Journal Paper – 2012). Continue reading

Please follow and like us:
0

Basic Knowledge of Casing while Drilling (CwD)

Casing while drilling (CwD) has been around for many years and it is one of proven technologies that can save both time and money. CwD is a process where a well is simultaneously drilled and cased; the casing is used for the drill string, and is rotated to the drill and cemented into the well at TD. One of the main benefits of this process is that it greatly cuts down on the tripping time needed to pull out the bottom hole assembly (BHA) and run the case- if not removing this need entirely. Therefore, the flat time is reduced, and the process is made more economically viable.

Figure 1- Casing while Drilling Operation (Courtesy of Weatherford)

Figure 1- Casing while Drilling Operation (Courtesy of Weatherford)

As shown in Figure 2 below, which is an example of Casing while Drilling utilized in one of oilfields in Oman for drilling surface section; this process can save up to 37.5% of time spent on a well based on historical data.

Figure 2 – A comparison between conventional drilling and casing while drilling of one field in Oman (136107-PA SPE Journal Paper - 2012).

Figure 2 – A comparison between conventional drilling and casing while drilling of one field in Oman (SPE 136107-PA ,SPE Journal Paper – 2012).

Continue reading

Please follow and like us:
0

Reservoir Properties and Completion Selections

In order to properly design a completion, reservoir rock and fluid properties must be carefully taken into account because they directly influence on equipment selection.  Reservoir properties (rock and fluid properties) which must be considered are as follows;

Rock Properties

Permeability (k)

Low permeability formation may require fracturing operation to enhance production. The completion for tight formations must be able to withstand pumping pressure and allow fracking fluid and proppant to flow through.

Formation Strength

Unconsolidated formations are required to complete a well with a sand control completion; thus, a well can be produced without any damage to downhole and surface equipment.

Formation Pressure

Reservoir pressure directly affects the pressure rating on all completions because all components must be able to work under reservoir condition. What’s more, formation pressure will affect how much flow of the well can produce.

Formation Temperature

High reservoir temperature will quickly degrade some components, especially elastomer, and this will result in well integrity issues due to pressure leakage. This is one of the critical concerns in selecting the right equipment to work under high temperature conditions. Continue reading

Please follow and like us:
0