What are Drilling Jars?

Most modern drilling jars are hydraulic. They are also usually double acting, meaning they can deliver an extra-heavy impact should the bottom hole assembly become stuck. They are intended to work as an integral part of the drill string, and can withstand high pressures and temperatures over a long period of time, making them suitable for long-term use.

With almost the same length and diameter specifications as standard drill collars, and with a similar connection strength and slip setting area, they may be used as a component of a stand of drill collars without difficulty.

Usually, jars will be used alongside accelerators, which are run above the jar and work automatically. They serve to amplify the impact force of the jar, and can even double it in some cases. They commonly use the compression of silicon to give added stored energy and optimize jar impact and free-travel distance in both directions. They also have the added benefit of dampening the dynamic load in the drillpipe, since they transmit shock waves poorly, thus helping reduce damage to both string and surface equipment.

Drilling Jars Diagram (Slideshare, 2017)

Drilling Jars Diagram (Slideshare, 2017)

Continue reading

Down hole Reamer – Its Application in Directional Drilling

Not only are reamers important for directional drilling, but they can also be useful in straight hole applications. Reaming assemblies can straighten out and smooth over crooked holes, restore undergauge holes to gauge, and get rid of any irregularities or keyseats. They also help to prevent excessive hole curvature in short intervals, which may be experienced when entering and exiting a section of hole which forms a sharp curve. Finally, reamers can reduce the rotational torque in a wellbore, and may therefore be used as a substitute for a conventional string or near-bit stabilizer.

Reamers are made by almost all major downhole tool manufacturers, and have the same core features: sealed or open (mud lubricated) bearings, cutter types – either “nobbly” or “smooth”, and either one (so called “3-point”) or two (“6-point”) sets of cutters in a tool.

Reamer (Courtesy of NOV, 2017)

Reamer (Courtesy of NOV, 2017)

Continue reading

Basic Understanding of Underbalanced Drilling

Between the fracture pressure and the pore pressure of the formation, the hydrostatic pressure of drilling fluid will always be maintained according to conventional drilling practice. In order to control the transport cuttings to the surface as well as the formation fluids, the drilling fluid is held within the wellbore where it circulates. Furthermore, it also keeps the drill bit cool and lubricated as it acts as a stabilizing agent. For effective use, the fluid must be water- or oil-based and this leads to a maximum weight of 19 pounds for each gallon (minimum of 7.8 pounds). As an attempt at imparting fluid loss, density, and rheological properties, it also contains a mixture of liquid and solid products.

Figure 1 - Conventional Drilling

Figure 1 – Conventional Drilling

For many years, the conventional drilling has been the safest method when drilling a well but there are also some negatives to using the method. For example, fluid invasion is a common problem because the drilling fluid pressure is naturally above the pressure of the natural formation – this can cause permeability damage. Also, physical blockages and washouts are common as the solids and fluids lodge into the formation. Continue reading

Directional Drilling Calculation Example for J-Profile Well

This article demonstrates how to design the well trajectory in J-shape from the surface location to the required target depth (TD).

Information Given

  • The surface location coordinate of Well-A is 6,543,065.00N 416,695.00E and the target is located at 6,542,213.00N 415,456.00E and the UTM zone is 31N.
  • Kick off depth = 4,200’MD/4,200’TVD
  • Planned build up rate = 2 degree/100 ft
  • Well profile = J-profile (build and hold)

The surface location coordinate of Well-A is 6,543,065.00N 416,695.00E and the target is located at 6,542,213.00N 415,456.00E and the UTM zone is 31N. Therefore, the surface and the target for Well-A can be illustrated is Figure 1. Continue reading

Drilling an oil well from surface drilling to completion – video training

This is one of excellent training video demonstrating the drilling process from start at surface casing to completing of the well in less than 7 minutes. This would be a good tool to teach people about drilling in our oil and gas industry. We also provide video transcription in order to help learners understand the content easily. If you love this content, please feel free to share with your friends.

Continue reading